banner
Fight4354

Fight4354

AI,Chem,Science,Study,Share,Hobby,LLM,Life,Sport

Softmax回歸程式碼

需要知道的程式碼實現細節
這些模組在 NN 中是通用的,後面的學習是在此基礎上的拓展

迴圈總訓練函數#

##### %matplotlib inline
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l
from IPython import display

def get_dataloader_workers():
    """使用4個進程來讀取的數據"""
    return 4

def load_data_fashion_mnist(batch_size, resize=None):
    """下載Fashion-MNIST數據集,然後將其加載到內存中"""
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0,transforms.Resize(resize)) # 如果有Resize參數傳進來,就進行resize操作
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(root="01_data/01_DataSet_FashionMNIST",train=True,transform=trans,download=True)
    mnist_test = torchvision.datasets.FashionMNIST(root="01_data/01_DataSet_FashionMNIST",train=False,transform=trans,download=True)            
    return (data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers()),
           data.DataLoader(mnist_test, batch_size, shuffle=False, num_workers=get_dataloader_workers()))               


batch_size = 256
train_iter, test_iter = load_data_fashion_mnist(batch_size) # 返回訓練集、測試集的迭代器     

num_inputs = 784
num_outputs = 10
w = torch.normal(0,0.01,size=(num_inputs,num_outputs),requires_grad=True)
b = torch.zeros(num_outputs,requires_grad=True)

def softmax(X):
    X_exp = torch.exp(X) # 每個都進行指數運算
    partition = X_exp.sum(1,keepdim=True) 
    return X_exp / partition # 這裡應用了廣播機制

# 實現softmax回歸模型
def net(X):
    return softmax(torch.matmul(X.reshape((-1,w.shape[0])),w)+b) # -1為默認的批量大小,表示有多少個圖片,每個圖片用一維的784列個元素表示      

def cross_entropy(y_hat, y):
    return -torch.log(y_hat[range(len(y_hat)),y]) # y_hat[range(len(y_hat)),y]為把y的標號列表對應的值拿出來。傳入的y要是最大概率的標號      

def accuracy(y_hat,y):
    """計算預測正確的數量"""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1: # y_hat.shape[1]>1表示不止一個類別,每個類別有各自的概率   
        y_hat = y_hat.argmax(axis=1) # y_hat.argmax(axis=1)為求行最大值的索引
    cmp = y_hat.type(y.dtype) == y # 先判斷邏輯運算符==,再賦值給cmp,cmp為布爾類型的數據
    return float(cmp.type(y.dtype).sum()) # 獲得y.dtype的類型作為傳入參數,將cmp的類型轉為y的類型(int型),然後再求和       

# 可以評估在任意模型net的準確率
def evaluate_accuracy(net,data_iter):
    """計算在指定數據集上模型的精度"""
    if isinstance(net,torch.nn.Module): # 如果net模型是torch.nn.Module實現的神經網絡的話,將它變成評估模式     
        net.eval()  # 將模型設置為評估模式
    metric = Accumulator(2) # 正確預測數、預測總數,metric為累加器的實例化對象,裡面存了兩個數
    for X, y in data_iter:
        metric.add(accuracy(net(X),y),y.numel()) # net(X)將X輸入模型,獲得預測值。y.numel()為樣本總數
    return metric[0] / metric[1] # 分類正確的樣本數 / 總樣本數

# Accumulator實例中創建了2個變量,用於分別存儲正確預測的數量和預測的總數量
class Accumulator:
    """在n個變量上累加"""
    def __init__(self,n):
        self.data = [0.0] * n
        
    def add(self, *args):
        self.data = [a+float(b) for a,b in zip(self.data,args)] # zip函數把兩個列表第一個位置元素打包、第二個位置元素打包....
        
    def reset(self):
        self.data = [0.0] * len(self.data)
        
    def __getitem__(self,idx):
        return self.data[idx]

# 訓練函數
def train_epoch_ch3(net, train_iter, loss, updater):
    if isinstance(net, torch.nn.Module):
        net.train() # 開啟訓練模式
    metric = Accumulator(3)
    for X, y in train_iter:
        y_hat = net(X)
        l = loss(y_hat,y) # 計算損失
        if isinstance(updater, torch.optim.Optimizer): # 如果updater是pytorch的優化器的話
            updater.zero_grad()
            l.mean().backward()  # 這裡對loss取了平均值出來
            updater.step()
            metric.add(float(l)*len(y),accuracy(y_hat,y),y.size().numel()) # 總的訓練損失、樣本正確數、樣本總數   
        else:
            l.sum().backward()
            updater(X.shape[0])
            metric.add(float(l.sum()),accuracy(y_hat,y),y.numel()) 
    return metric[0] / metric[2], metric[1] / metric[2] # 所有loss累加除以樣本總數,總的正確個數除以樣本總數  


    
class Animator:
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                ylim=None, xscale='linear',yscale='linear',
                fmts=('-','m--','g-.','r:'),nrows=1,ncols=1,
                figsize=(3.5,2.5)): 
        if legend is None:
            legend = []
        d2l.use_svg_display()
        self.fig, self.axes = d2l.plt.subplots(nrows,ncols,figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes,]
        self.config_axes = lambda: d2l.set_axes(self.axes[0],xlabel,ylabel,xlim,ylim,xscale,yscale,legend)         
        self.X, self.Y, self.fmts = None, None, fmts
        
    def add(self, x, y):
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)] 
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a,b) in enumerate(zip(x,y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        display.display(self.fig)
        display.clear_output(wait=True)

# 總訓練函數        
def train_ch3(net,train_iter,test_iter,loss,num_epochs,updater):
    animator = Animator(xlabel='epoch',xlim=[1,num_epochs],ylim=[0.3,0.9],       
                       legend=['train loss','train acc','test acc'])
    for epoch in range(num_epochs):  # 變量num_epochs遍數據
        train_metrics = train_epoch_ch3(net,train_iter,loss,updater) # 返回兩個值,一個總損失、一個總正確率
        test_acc = evaluate_accuracy(net, test_iter) # 測試數據集上評估精度,僅返回一個值,總正確率  
        animator.add(epoch+1,train_metrics+(test_acc,)) # train_metrics+(test_acc,) 僅將兩個值的正確率相加,
    train_loss, train_acc = train_metrics
    
# 小批量隨機梯度下降來優化模型的損失函數
lr = 0.1
def updater(batch_size):
    return d2l.sgd([w,b],lr,batch_size)

num_epochs = 100
train_ch3(net,train_iter,test_iter,cross_entropy,num_epochs,updater)

預測數據#

def predict_ch3(net,test_iter,n=12):
    for X, y in test_iter: 
        break # 僅拿出一批六個數據
    trues = d2l.get_fashion_mnist_labels(y)
    preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
    titles = [true + '\n' + pred for true, pred in zip(trues,preds)]
    d2l.show_images(X[0:n].reshape((n,28,28)),1,n,titles=titles[0:n])
    
predict_ch3(net,test_iter)
載入中......
此文章數據所有權由區塊鏈加密技術和智能合約保障僅歸創作者所有。